Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mamiko Odoko,* Naoki Nishikawa and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
odoko@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.031 \AA$
R factor $=0.067$
$w R$ factor $=0.226$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
cyclo-Tetrakis[4-(aminomethyl)-5-(hydroxy-methyl)-2-methylpyridin-3-olato- $\left.\kappa N^{1}: \kappa^{2} N^{4}, O^{3}\right]$ tetrakis[chloropalladium(II)] nonahydrate

The title compound, $\left[\mathrm{Pd}_{4}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{4} \mathrm{Cl}_{4}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}$, is a cyclic tetramer. The $\mathrm{Pd}^{\mathrm{II}}$ atom shows distorted square-planar coordination arising from chelation by the phenolate O atom and the pyridoxamine ligand; the metal atom is also linked to the pyridyl N atom from an adjacent ligand and a Cl atom. A twofold axis, which is parallel to the c axis, is located at the center of a tetramer. The crystal packing is stabilized by hydrogen bonding among neighboring complex molecules via the solvent water molecules.

Comment

Pyridoxamine (PM) is a member of the vitamin B6 family including pyridoxal and pyridoxine (PN). The crystal structures of metal complexes of B6 vitamins have been studied; the phenolate O , and 4-hydroxymethyl O or 4-aminomethyl N atoms are, in general, the sites involved in chelation (Mosset et al., 1978; Franklin \& Richardson, 1978, 1980; Thompson et al., 1980; Sabirov et al., 1982, 1983, 1984, 1993, 1997; Rao et al., 1986; Mathews \& Manohar, 1991; Acquaye \& Richardson, 1992; Mathews et al., 1992; Casas et al., 1997, 2000, 2004; Sakagami et al., 1999). In other crystal structures, chelation also involves the 5-hydroxymethyl O atom (Franklin \& Richardson, 1980; Casas et al., 1997). On the other hand, for $\mathrm{PN}-$ metal complexes, the site is the pyridyl N atom (Sabirov et al., 1983; Makhyoun et al.,1986; Acquaye \& Richardson, 1992; Dey et al., 2003).

(I)

The title compound, (I), is a nonahydrated cyclic tetramer (Fig. 1), which is rarely found among B6 vitamin-metal

A view of the structure of the $\mathrm{PM}-\mathrm{Pd}^{\mathrm{II}}$ complex compound of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary radii. [Symmetry code: (vi) $\frac{3}{4}-y,-\frac{1}{4}+x, \frac{3}{4}-z$.]

Figure 2
A view of the hydrogen bonding (blue lines) stabilizing the complex layer. [Symmetry code: (i) $1-x, \frac{3}{2}-y, z$.]
complexes. A twofold axis, which is parallel to the c axis, is located at the center of a tetramer. The Pd atom is coordinated by one phenolate O atom and one 4 -aminomethyl N atom from the PM ligand, one pyridine N atom from an adjacent PM ligand and one Cl atom. This is the first crystal structure of a PM-metal complex having these chelation sites along with the pyridyl N atom. The coordinating atoms form a square

Figure 3
A view of the hydrogen bonding (blue lines) between the complex layers. [Symmetry codes: (ii) $1-x, 1-y, 1-z$; (iii) $1+x, y, z$; (iv) $\frac{7}{4}-y, \frac{1}{4}+x$, $\frac{1}{4}+z$; (v) $2-x, \frac{3}{2}-y, z$.]
plane around the Pd atom. The coordination geometry is similar to those found in $\mathrm{PM}-\mathrm{Pt}^{\mathrm{II}}$ complexes (Acquaye \& Richardson, 1992) in which the Pt atom is coordinated by the chelating atoms along with two Cl atoms.

In (I), the pyridyl plane $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1$ is tilted by 44.7 (2) ${ }^{\circ}$ from the coordination plane $\mathrm{O} 1 / \mathrm{N} 2 / \mathrm{Cl} 1 / \mathrm{N} 1{ }^{\mathrm{vi}} / \mathrm{Pd}$ [symmetry code: (vi) $\frac{3}{4}-y,-\frac{1}{4}+x, \frac{3}{4}-z$]; the tilt is larger than that in $\mathrm{PM}-\mathrm{Pt}^{\mathrm{II}}$ (approximately 23.35°). The tilt seems to be necessary for the formation of the cyclic tetramer. The pyridyl plane is tilted by $46.3(2)^{\circ}$ from the mean plane of the tetramer defined by $\mathrm{Cl} 1 /$ $\mathrm{Cl1}^{\mathrm{vi}} / \mathrm{Cl}^{\text {vii }} / \mathrm{Cl1}^{\text {viii }}$ [symmetry codes: (vii) $1-x, \frac{1}{2}-y, z$; (viii) $\left.\frac{1}{4}+y, \frac{3}{4}-x, \frac{3}{4}-z\right]$, with the 2-methyl group on the inside of the tetramer and with 5-hydroxymethyl group outside. As a result, the inside of the tetramer is hydrophobic, whereas the outside is hydrophilic.

In the crystal packing, $\mathrm{PM}-\mathrm{Pd}^{\mathrm{II}}$ lies in a layer parallel to the $a b$ plane, stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding between 4-aminomethyl N and Cl atoms, and between 5-hydroxymethyl groups via O1W. The layers are stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding and the hydrogen-bond network via $\mathrm{O} 2 W$ and O3W (Table 2, and Figs. 2 and 3).

Experimental

Pyridoxamine dihydrochloride ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) was dissolved in $20 \%(v / v) \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$, and to this was added potassium
tetrachloropalladate(II) ($6 \mathrm{mg}, 0.02 \mathrm{mmol}$) dissolved in $20 \%(v / v)$ $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. Red needle-like crystals appeared from the mixture after one month.

Crystal data

$\left[\mathrm{Pd}_{4}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{4} \mathrm{Cl}_{4}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.953 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1398.38$	Mo $K \alpha \mathrm{radiation}^{2}$
Tetragonal, $I 4_{1} / a$	$\mu=1.79 \mathrm{~mm}^{-1}$
$a=12.26(2) \AA$	$T=123 \mathrm{~K}$
$c=31.65(4) \AA$	Needle, red
$V=455(13) \AA^{3}$	$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$
$Z=4$	

Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.206, T_{\text {max }}=0.670$
(expected range $=0.235-0.765$)

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1218 P)^{2}\right. \\
& \quad+4.0633 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.15 \mathrm{e} \AA^{-3}
\end{aligned}
$$

21727 measured reflections 2736 independent reflections 1659 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$ $R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.226$
$S=1.13$
2736 reflections
154 parameters
All H -atom parameters refined

All other H atoms were included in the riding-model approximation with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA, \mathrm{~N}-\mathrm{H}=0.90 \AA$ and $\mathrm{O}-\mathrm{H}=0.76-0.87 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The highest maximum residual electron density is $1.63 \AA$ from $\mathrm{H} 6 W$ and the deepest hole is $0.94 \AA$ from Pd1.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Acquaye, J. H. K. A. \& Richardson, M. F. (1992). Inorg. Chim. Acta, 201, 101107.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Casas, J. S., Castellano, E. E., Condori, F., Couce, M. D., Sanchez, A., Sordo, J., Ma Varela, J. \& Zuckerman-Schpector, J. (1997). J. Chem. Soc. Dalton Trans. pp. 4421-4430.
Casas, J. S., Castineiras, A., Condori, F., Couce, M. D., Russo, U., Sanchez, A., Sordo, J. \& Varela, J. M. (2000). Polyhedron, 19, 813-819.
Casas, J. S., Castineiras, A., Condori, F., Couce, M. D., Russo, U., Sanchez, A., Sordo, J., Varela, J. M. \& Vazquez-Lopez, E. M. (2004). J. Organomet. Chem. 689, 620-626.
Dey, S., Banerjee, P., Gangopadhyay, S. \& Vojtisek, P. (2003). Transition Met. Chem. 28, 765-771.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Franklin, K. J. \& Richardson, M. F. (1978). J. Chem. Soc. Chem. Commun. pp. 97-98.
Franklin, K. J. \& Richardson, M. F. (1980). Inorg. Chem. 19, 2107-2113.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Makhyoun, M. A., Al-Salem, N. A. \& El-Ezaby, M. S. (1986). Inorg. Chim. Acta, 123, 117-125.
Mathews, I. I. \& Manohar, H. (1991). J. Chem. Soc. Dalton Trans. pp. 21392143.

Mathews, I. I., Rao, S. P. S. \& Nethaji, M. (1992). Polyhedron, 11, 13971401.

Mosset, A., Nepveu-Juras, F., Haran, R. \& Bonnet, J. J. (1978). J. Inorg. Nucl. Chem. 40, 1259-1263.
Rao, S. P. S., Varughese, K. I. \& Manohar, H. (1986). Inorg. Chem. 25, 734-740.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
Sabirov, V. K., Batsanov, A. S., Struchkov, Y. T. \& Azizov, M. A. (1983). Koord. Khim. 9, 1701-1707. (In Russian.)
Sabirov, V. K., Batsanov, A. S., Struchkov, Y. T., Azizov, M. A., Shabilalov, A. A. \& Pulatov, A. S. (1984). Koord. Khim. 10, 275-279. (In Russian.)

Sabirov, V. K., Porai-Koshitz, M. A. \& Struchkov, Yu. T. (1993). Acta Cryst. C49, 1611-1614.
Sabirov, V. K., Struchkov, Y. T., Batsanov, A. S. \& Azizov, M. A. (1982). Koord. Khim. 8, 1623-1628. (In Russian.)
Sabirov, V. K., Struchkov, Y. T., Khakimov, K. K. \& Nurmukhamedov, S. A. (1997). Uzb. Khim Zh. pp. 3-8. (In Russian.)

Sakagami, N., Kita, E., Kita, P., Wisniewska, J. \& Kaizaki, S. (1999). Polyhedron, 18, 2001-2007.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Thompson, D. M., Balenovich, W., Hornich, L. H. M. \& Richardson, M. F.
(1980). Inorg. Chim. Acta, 46, 199-203.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

